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Outline

Path integrals in quantum mechanics
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Part I

Path integrals in quantum mechanics
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Transition amplitudes in quantum mechanics

key quantity in quantum mechanics: transition amplitude

Z(b, a) ≡ 〈xb(tb) | xa(ta)〉
Z(b, a) is probability amplitude for particle to go from point xa at
time ta to point xb at time tb

in this talk, will work in Heisenberg picture
state vectors |Ψ〉 are stationary
operators and their eigenvectors evolve with time

x(t) = eiHt/~ x(0) e−iHt/~

|x(t)〉 = eiHt/~ |x(0)〉
often will shift Hamiltonian so ground state energy is zero

H |φn(t)〉 = En |φn(t)〉, E0 = 0
|φ0(t)〉 = |φ0(0)〉 ≡ |0〉
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Spectral representation of transition amplitude

insert complete (discrete) set of Heisenberg-picture eigenstates
|φn(t)〉 of Hamiltonian H into transition amplitude

Z(b, a) ≡ 〈xb(tb) | xa(ta)〉 =
∑

n

〈xb(tb) |φn(ta)〉〈φn(ta)| xa(ta)〉

now use |φn(t)〉 = eiHt/~|φn(0)〉 = eiEnt/~|φn(0)〉 to obtain

Z(b, a) =
∑

n

eiEn(ta−tb)/~〈xb(tb) |φn(tb)〉〈φn(ta)| xa(ta)〉

finally, 〈x(t)|φn(t)〉 ≡ ϕn(x) is the wavefunction in coordinate
space, so

Z(b, a) =
∑

n

ϕ∗n(xb)ϕn(xa) e−iEn(tb−ta)/~

transition amplitude contains information about all energy levels
and all wavefunctions→ spectral representation

5 / 150



Vacuum saturation

take ta = −T and tb = T in the limit T → (1− iε)∞
〈xb(T)|xa(−T)〉 = 〈xb(0)|e−iHT/~ eiH(−T)/~|xa(0)〉

=
∞∑

n=0

〈xb(0)|φn(0)〉〈φn(0)|xa(0)〉 e−2iEnT/~

→ 〈xb(0)|0〉〈0|xa(0)〉
insert complete set of energy eigenstates, use En+1 ≥ En, E0 = 0,
assume nondegenerate vacuum

possibility of probing ground state (vacuum) properties
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Vacuum expectation values

now apply limit T → (1− iε)∞ to more complicated amplitude

〈xb(T)|x(t2)x(t1)|xa(−T)〉
= 〈xb(0)|e−iHT/~ x(t2)x(t1) e−iHT/~|xa(0)〉
=

∑
n,m

〈xb(0)|φn(0)〉〈φn(0)|x(t2)x(t1)|φm(0)〉〈φm(0)|xa(0)〉
×e−i(En+Em)T/~

→ 〈xb(0)|0〉〈0|x(t2)x(t1)|0〉〈0|xa(0)〉
hence, vacuum expectation values from

〈0|x(t2)x(t1)|0〉 = lim
T→(1−iε)∞

〈xb(T)|x(t2)x(t1)|xa(−T)〉
〈xb(T)|xa(−T)〉

result generalizes to higher products of position operator
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Observables from correlation functions

all observables can be extracted from the correlation functions
(vacuum expectation values)
example: energies of the stationary states

〈0|x(t)x(0)|0〉 = 〈0|eiHt/~x(0)e−iHt/~x(0)|0〉
=

∑
n

〈0|x(0)e−iHt/~|φn(0)〉〈φn(0)|x(0)|0〉

=
∑

n

|〈0|x(0)|φn(0)〉|2e−iEnt/~

similarly for more complicated correlation functions

〈0|x2(t)x2(0)|0〉 = 〈0|eiHt/~x2(0)e−iHt/~x2(0)|0〉
=

∑
n

|〈0|x2(0)|φn(0)〉|2e−iEnt/~

but difficult to extract energies En from above oscillatory functions
→ much easier if we had decaying exponentials
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The imaginary time formalism

can get decaying exponentials if we rotate from the real to the
imaginary axis in time (Wick rotation) t→ −iτ

〈0|x(t)x(0)|0〉 =
∑

n

|〈0|x(0)|φn(0)〉|2e−Enτ/~

τ→∞−→ |〈0|x(0)|0〉|2 + |〈0|x(0)|φ1(0)〉|2e−E1τ/~

later, will see this imaginary time formalism provides another
important advantage for Monte Carlo applications
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Quantum mechanics and path integrals

in the 1940s, Feynman developed an alternative formulation of
quantum mechanics (his Ph.D. thesis)

Richard Feynman, Rev Mod Phys 20, 367 (1948)

quantum mechanical law of motion:
probability amplitude from sum over histories

Z(b, a) ∼
X

all paths x(t)
from a to b

exp (iS[x(t)]/~)

all paths contribute to probability amplitude, but with different
phases determined by the action S[x(t)]

classical limit: when small changes in path yield changes in
action large compared to ~, phases cancel out and path of least
action δS = 0 dominates sum over histories
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Defining the path integral

action = time integral of Lagrangian (kinetic minus potential
energy)

S =

∫
dt L(x, ẋ) =

∫
dt
(

K − U
)

divide time into steps of width ε where Nε = tb − ta
path integral is defined as

Z(b, a) = lim
ε→0

1
A

∫ ∞

−∞

dx1

A
dx2

A
· · · dxN−1

A
eiS[x(t)]/~

where A is a normalization
factor depending on ε chosen
so path integral well-defined
in nonrelativistic theory, paths
cannot double-back in time
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Schrödinger equation

probability amplitude ψ(xb, tb) at time tb given amplitude ψ(xa, ta)
at earlier time ta given by

ψ(xb, tb) =

∫
Z(b, a) ψ(xa, ta) dxa

take ta = t and tb = t + ε one time slice away

ψ(xb, t + ε) =
1
A

∫ ∞

−∞
exp

[
iε
~

L
(

xb + xa

2
,

xb − xa

ε

)]
ψ(xa, t) dxa

in L, take ẋ = (xb − xa)/ε and mid-point prescription x→ (xb + xa)/2

particle in potential: L = 1
2 mẋ2−V(x, t), write xb = x, xa = x + η

ψ(x, t + ε) =
1
A

∫ ∞

−∞
eimη2/(2~ε)e−iεV(x+η/2,t)/~ψ(x + η, t) dη
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Schrödinger equation (continued)

ψ(x, t + ε) =
1
A

∫ ∞

−∞
eimη2/(2~ε)e−iεV(x+η/2,t)/~ψ(x + η, t) dη

rapid oscillation of eimη2/(2~ε) except when η ∼ O(
√
ε)→ integral

dominated by contributions from η having values of this order

expand to O(ε) and O(η2), except eimη2/(2~ε) (ψ refers to ψ(x, t))

ψ + ε
∂ψ

∂t
=

1
A

∫ ∞

−∞
eimη2/(2~ε)

[
1− iε

~
V(x, t)

][
ψ+η

∂ψ

∂x
+
η2

2
∂2ψ

∂x2

]
dη

=
1
A

∫ ∞

−∞
eimη2/(2~ε)

[
ψ − iε

~
V(x, t)ψ + η

∂ψ

∂x
+
η2

2
∂2ψ

∂x2

]
dη
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Schrödinger equation (continued)

ψ + ε
∂ψ

∂t
=

1
A

∫ ∞

−∞
eimη2/(2~ε)

[
ψ − iε

~
V(x, t)ψ + η

∂ψ

∂x
+
η2

2
∂2ψ

∂x2

]
dη

matching leading terms on both sides determines A (analytic
continuation to evaluate integral)

1 =
1
A

∫ ∞

−∞
eimη2/(2~ε)dη =

1
A

(
2πi~ε

m

)1/2

⇒ A =

(
2πi~ε

m

)1/2

two more integrals:
1
A

∫ ∞

−∞
eimη2/(2~ε) η dη = 0,

1
A

∫ ∞

−∞
eimη2/(2~ε) η2dη =

i~ε
m

O(ε) part of equation at top yields

−~
i
∂ψ

∂t
= − ~2

2m
∂2ψ

∂x2 + V(x, t)ψ

the Schrödinger equation!
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Free particle in one dimension

Lagrangian of free particle in one dimension L = 1
2 mẋ2

amplitude for particle to travel from xa at time ta to location xb at
later time tb is

〈xb(tb)|xa(ta)〉 =

∫ b

a
Dx(t) exp(iS[b, a]/~)

summing over all allowed paths with x(ta) = xa and x(tb) = xb.
classical path xcl(t) from δS = 0 and boundary conditions:

ẍcl(t) = 0, xcl(t) = xa + (xb − xa)
(t − ta)
(tb − ta)

classical action is
Scl[b, a] =

∫ tb

ta
dt 1

2 mẋ2
cl =

m(xb − xa)
2

2(tb − ta)
write x(t) = xcl(t) + χ(t) where χ(ta) = χ(tb) = 0 then

S[b, a] = Scl[b, a] +

∫ tb

ta
dt 1

2 mχ̇2

where Scl[b, a] is classical action; no terms linear in χ(t) since Scl
is extremum
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Path integral for free particle

amplitude becomes

Z(b, a) = F(T) exp(iScl/~)

F(T) =

∫ 0

0
Dχ exp

{
im
2~

∫ T

0
dt χ̇2

}
partition time into discrete steps of length ε, use midpoint
prescription, and note that χ0 = χN = 0∫ 0

0
Dχ =

1
A

∫ ∞

−∞

(
N−1∏
l=1

dχl

A

)
A =

(
2πi~ε

m

)1/2

∫ T

0
dt χ̇2 =

1
ε

N−1∑
j=0

(χj+1−χj)
2

F(T) =
( m

2πi~ε

)N/2
∫ ∞

−∞

(
N−1∏
l=1

dχl

)
exp

{
im

2~ε
χjMjkχk

}
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Gaussian integration

a multivariate Gaussian integral remains

F(T) =
( m

2πi~ε

)N/2
∫ ∞

−∞

(
N−1∏
l=1

dχl

)
exp

{
im

2~ε
χjMjkχk

}
where M is a symmetric (N − 1)× (N − 1) matrix

M =


2 −1 0 0 · · ·
−1 2 −1 0 · · ·

0 −1 2 −1 · · ·
...

...
...

...
. . .


Gaussian integrals of symmetric matrix A easily evaluated∫ ∞

−∞

(
n∏

i=1

dχi

)
exp
(
−χjAjkχk

)
=

(
πn

det A

)1/2

result:
F(T) =

( m
2πi~ε det M

)1/2
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Determinant evaluation

now need to compute det(M)

consider n× n matrix Bn of form

Bn =


2b −b 0 0 · · ·
−b 2b −b 0 · · ·

0 −b 2b −b · · ·
...

...
...

...
. . .


n,n

notice that

det Bn = 2b det Bn−1 + b det

 −b −b 0 · · ·
0
...

Bn−2


= 2b det Bn−1 − b2 det Bn−2

define In = det Bn then have recursion relation

In+1 = 2bIn − b2In−1, I−1 = 0, I0 = 1, n = 0, 1, 2, . . .
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Transition amplitude for free particle

rewrite In+1 = 2bIn − b2In−1, I−1 = 0, I0 = 1 as(
In+1
In

)
=

(
2b −b2

1 0

)(
In

In−1

)
=

(
2b −b2

1 0

)n( I1
I0

)
straightforward to show that(

2b −b2

1 0

)n

=

(
(n + 1)bn −nbn+1

nbn−1 −(n− 1)bn

)
so that (

In+1
In

)
=

(
(n + 1)bn −nbn+1

nbn−1 −(n− 1)bn

)(
2b
1

)
and thus, In = det Bn = (n + 1)bn

here, b = 1 and n = N − 1 so det M = N and using Nε = tb − ta
obtain

F(tb, ta) =

(
m

2πi~(tb−ta)

)1/2

Final result:

〈xb(tb)|xa(ta)〉 =

(
m

2πi~(tb−ta)

)1/2

exp
{

im(xb − xa)
2

2~(tb − ta)

}
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Infinite square well

one of the first systems usually studied when learning quantum
mechanics is the infinite square well
particle moving in one dimension under influence of potential

V(x) =

{
0 for 0 < x < L
∞ for x ≤ 0 and x ≥ L

path integral for transition amplitude given by

Z(b, a) = lim
ε→0

1
A

∫ L

0

dx1

A
· · ·
∫ L

0

dxN−1

A
exp

 im
2ε~

N−1∑
j=0

(xj+1−xj)
2


paths limited to 0 < x < L

gaussian integrals over bounded domains produce error
functions→ direct evaluation difficult in closed form
extend regions of integration to −∞ < x <∞, but subtract off
forbidden paths

M. Goodman, Am. Jour. Phys. 49, 9 (1981)
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Path cancellations

black lines: all unbounded paths between end points
blue lines: paths between end points that do not cross an nL
boundary
no doubling back in time
magenta circle indicates action preserving reflection

end point
−xb

end point
2L− xb
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Path cancellations (continued)

continuing

end point
−2L + xb

end point
2L + xb

and so on forever→ final result is

〈xb, tb|xa, ta〉well = 〈xb, tb|xa, ta〉free

−〈−xb, tb|xa, ta〉free − 〈2L− xb, tb|xa, ta〉free

+〈−2L + xb, tb|xa, ta〉free + 〈2L + xb, tb|xa, ta〉free + · · ·

=
∞∑

n=−∞

{
〈2nL + xb, tb|xa, ta〉free − 〈2nL− xb, tb|xa, ta〉free

}
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Transition amplitude for infinite square well

substitute amplitude for free particle

〈xb(tb)|xa(ta)〉 =

(
m

2πi~(tb − ta)

)1/2

×
∞∑

n=−∞

(
exp

{
im(2nL+xb−xa)

2

2~(tb − ta)

}
− exp

{
im(2nL−xb−xa)

2

2~(tb − ta)

})
apply Poisson summation and integrate the gaussian

∞∑
n=−∞

f (n) =
∞∑

j=−∞

∫ ∞

−∞
ds f (s)e2πijs∫ ∞

−∞
ds exp

(
−iαs2 ± iβs

)
=

√
π

iα
exp

(
iβ2

4α

)
spectral representation of transition amplitude

〈xb(tb)|xa(ta)〉 =
∞∑

n=1

ϕn(xb)ϕ
∗
n(xa)e−iEn(tb−ta)/~

En =
n2π2~2

2mL2 ϕn(x) =

√
2
L

sin
(nπx

L

)
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Free particle in 1D periodic box

consider particle moving in one-dimension with periodic
boundary conditions at x = 0 and x = L

enforcing boundary conditions on paths difficult
use trick similar to that used in infinite square well
express set of allowed paths in terms of equivalent set of
unrestricted paths

end point xb + L

end point xb + 2L

result:
〈xb, tb|xa, ta〉periodic =

∞∑
n=−∞

〈xb + nL, tb|xa, ta〉free
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Transition amplitude for periodic boundary

substitute amplitude for free particle

〈xb(tb)|xa(ta)〉 =

(
m

2πi~(tb − ta)

)1/2 ∞∑
n=−∞

exp
{

im(nL+xb−xa)
2

2~(tb − ta)

}
apply Poisson summation and integrate the gaussian

∞∑
n=−∞

f (n) =
∞∑

j=−∞

∫ ∞

−∞
ds f (s)e2πijs∫ ∞

−∞
ds exp

(
−iαs2 ± iβs

)
=

√
π

iα
exp

(
iβ2

4α

)
spectral representation of transition amplitude

〈xb(tb)|xa(ta)〉 =
∞∑

n=−∞
ϕn(xb)ϕ

∗
n(xa)e−iEn(tb−ta)/~

En =
p2

n

2m
pn =

2πn~
L

ϕn(x) =
1√
L

eipnx/~

quantization of momenta
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The simple harmonic oscillator

kinetic and potential energy of a simple harmonic oscillator of
mass m and frequency ω

K = 1
2 mẋ2 U = 1

2 mω2x2

action is given by

S[x(t)] =

∫ tb

ta
dt
( 1

2 mẋ2 − 1
2 mω2x2

)
classical equations of motion

δS = 0 ⇒ ẍcl + ω2xcl = 0

value of action for the classical path

Scl =
mω

2 sin(ωT)

[
(x2

a + x2
b) cos(ωT)− 2xaxb

]
to calculate, write path as deviation from classical path

x(t) = xcl(t) + χ(t) χ(ta) = χ(tb) = 0
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Path integral of simple harmonic oscillator

amplitude can then be written as

Z(b, a) = F(T) exp(iScl/~)

F(T) =

∫ 0

0
Dχ exp

{
im
2~

∫ T

0
dt (χ̇2 − ω2χ2)

}
partition time into discrete steps of length ε and use midpoint
prescription∫ 0

0
Dχ =

1
A

∫ ∞

−∞

(
N−1∏
l=1

dχl

A

)
A =

(
2πi~ε

m

)1/2

∫ T

0
dt(χ̇2−ω2χ2) =

1
ε

N−1∑
j=0

[
(χj+1−χj)

2− ε
2ω2

4
(χj+1+χj)

2
]

F(T) =
( m

2πi~ε

)N/2
∫ ∞

−∞

(
N−1∏
l=1

dχl

)
exp

{
im

2~ε
χjMjkχk

}
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Gaussian integration

a multivariate Gaussian integral remains

F(T) =
( m

2πi~ε

)N/2
∫ ∞

−∞

(
N−1∏
l=1

dχl

)
exp

{
im

2~ε
χjMjkχk

}
where M is a symmetric (N − 1)× (N − 1) matrix

M =


2 −1 0 0 · · ·
−1 2 −1 0 · · ·

0 −1 2 −1 · · ·
...

...
...

...
. . .

− ε2ω2

4


2 1 0 0 · · ·
1 2 1 0 · · ·
0 1 2 1 · · ·
...

...
...

...
. . .


Gaussian integrals are easily evaluated

F(T) =
( m

2πi~ε det M

)1/2
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Evaluating the determinant

now must compute det M

consider det(Bn) where n× n matrix Bn has form

Bn =


a b 0 0 · · ·
b a b 0 · · ·
0 b a b · · ·
...

...
...

...
. . .


n,n

matches M for n = N − 1, a = 2(1− ε2ω2/4), b = −(1 + ε2ω2/4)

notice that

det Bn = a det Bn−1 − b det

 b b 0 · · ·
0
...

Bn−2


= a det Bn−1 − b2 det Bn−2

define In = det Bn to obtain recursion relation

In+1 = aIn − b2In−1, I−1 = 0, I0 = 1, n = 0, 1, 2, . . .
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Evaluating the determinant (continued)

rewrite recursion relation as(
In+1
In

)
=

(
a −b2

1 0

)(
In

In−1

)
=

(
a −b2

1 0

)n( I1
I0

)
diagonalize(

a −b2

1 0

)
= S

(
λ+ 0
0 λ−

)
S−1

λ± =
1
2

(
a±

√
a2 − 4b2

)
,

S =

(
λ+ λ−
1 1

)
S−1 =

1
λ+ − λ−

(
1 −λ−
−1 λ+

)
then we have(

In+1
In

)
= S

(
λn

+ 0
0 λn

−

)
S−1

(
a
1

)
thus

In = det Bn =
λn+1

+ − λn+1
−

λ+ − λ−
(λ+ 6= λ−)
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Amplitude for simple harmonic oscillator

using λ± = 1± iωε+ O(ε2) yields

lim
ε→0

N→∞

ε det M = lim
ε→0

N→∞

ε
1

2iωε

(
(1 + iωε)N − (1− iωε)N

)
= lim

ε→0
N→∞

1
2iω

((
1 +

iωT
N

)N

−
(

1− iωT
N

)N
)

=
1

2iω

(
eiωT − e−iωT) =

sinωT
ω

.

final result for the path integral

Scl =
mω

2 sin(ωT)

[
(x2

a + x2
b) cos(ωT)− 2xaxb

]
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Evolution of gaussian wave packet

for initial wave packet at time ta = 0 with probability dist.

|φ(xa, ta)|2 =
1

σ
√

2π
exp

(
− (xa − x̄)2

2σ2

)
probability amplitude at later time

φ(xb, tb) =

∫ ∞

−∞
dxa Z(b, a) φ(xa, 0)

=

(
−imω(2π)−3/2

~σ sin(ωtb)

)1/2∫ ∞

−∞
dxa eiScl/~ e−(xa−x̄)2/(4σ2)

final result for probability distribution: Gaussian with width s

|φ(xb, tb)|2 =
1

s
√

2π
exp

(
− (xb − x̄ cos(ωtb))2

2s2

)
new width given by

s = σ

{
cos2(ωtb) +

~2

4m2ω2σ4 sin2(ωtb)
}1/2
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Visualization

time evolution of a Gaussian wave packet for a simple harmonic
oscillator

mass m = 1g/mol = 1.66× 10−27kg
frequency ω = 3× 1014radians/sec
initial wave packet:

center at 0.5 au
RMS spread 0.14 au

1 au (atomic unit) = 0.529 angstrom
probability distribution shown
(in inverse a.u.)

completely calculated using path integrals→ did not use
Schrodinger equation
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Other probability amplitudes

so path integrals give us simple transition amplitudes

〈xb(tb)|xa(ta)〉 =

∫ b

a
Dx exp

{
i
~

∫ tb

ta
dt L(x, ẋ)

}
but this important result generalizes to more complicated
amplitudes

〈xb(tb)| x(t2) x(t1) |xa(ta)〉

=

∫ b

a
Dx x(t2)x(t1) exp

{
i
~

∫ tb

ta
dt L(x, ẋ)

}
for ta < t1 < t2 < tb
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Path integrals in imaginary time

in imaginary time formalism, paths contribute to sum over
histories with real exponential weights (not phases)

〈xb(τb)| x(τ2) x(τ1) |xa(τa)〉

=

∫ b

a
Dx x(τ2)x(τ1) exp

{
−1

~

∫ τb

τa

dτ L(x, ẋ)
}

classical path gets highest weighting
note that weights are all real and positive since action is real

this fact will be crucial for the Monte Carlo method
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Vacuum expectation values from path integrals

obtain correlation functions (vacuum expectation values) from
ratios of path integrals

〈0|x(t2)x(t1)|0〉 = lim
T→∞

〈xb(T)|x(t2)x(t1)|xa(−T)〉
〈xb(T)|xa(−T)〉

=

∫ b

a
Dx x(t2)x(t1) exp

{
−1

~

∫ ∞

−∞
dτL(x, ẋ)

}
∫ b

a
Dx exp

{
−1

~

∫ ∞

−∞
dτL(x, ẋ)

}
generalizes to more complicated correlation functions

any correlation function can be computed using path integrals
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Examples for the simple harmonic oscillator

evaluating path integrals as before, the following correlation
functions can be obtained (τ1 ≤ τ2 ≤ τ3 ≤ τ4)

〈0|x(τ1)|0〉 = 0

〈0|x(τ2)x(τ1)|0〉 =
~

2mω
e−ω(τ2−τ1)

〈0|x(τ4)x(τ3)x(τ2)x(τ1)|0〉 =

(
~

2mω

)2

e−ω(τ4−τ1)

×

[
e−ω(τ2−τ3) + 2e−ω(τ3−τ2)

]
comparison with spectral representation tells us

〈0|x(τ)x(0)|0〉 =
~

2mω
e−ωτ

⇒ E1 − E0 = ~ω |〈1|x(0)|0〉|2 =
~

2mω
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Another example in SHO

excite vacuum with x(τ)2 operator

〈0|x2(τ)x2(0)|0〉 =

(
~

2mω

)2(
1 + 2e−2ωτ

)
compare with spectral representation at large time separations

lim
τ→∞

〈0|x2(τ)x2(0)|0〉 = |〈0|x2(0)|0〉|2

+ |〈2|x2(0)|0〉|2 e−(E2−E0)t/~ + . . .

=

(
~

2mω

)2(
1 + 2e−2ωτ

)
interpretation:

E2 − E0 = 2~ω

|〈0|x2(0)|0〉|2 =

(
~

2mω

)2

|〈2|x2(0)|0〉|2 = 2
(

~
2mω

)2
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One last example in SHO

to determine expectation value of x(0)2 in first-excited state

〈0|x(τ) x2( 1
2τ) x(0)|0〉 = 3

(
~

2mω

)2

e−ωτ

compare with spectral interpretation at large times

lim
τ→∞

〈0|x(τ)x2( 1
2τ)x(0)|0〉

= |〈0|x(0)|1〉|2〈1|x2(0)|1〉 e−(E1−E0)τ/~ + · · ·
since 〈0|x(0)|0〉 = 〈0|x(τ)|0〉 = 0

by inspection and using previously derived results

〈1|x2(0)|1〉 =
3~

2mω
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Pause for reflection

observables in quantum mechanics can be extracted from the
correlation functions (vacuum expectation values)
imaginary time formalism is a great trick for assisting in such
extractions
correlation functions can be computed via path integrals

〈0|x(t2)x(t1)|0〉

=

∫ b

a
Dx x(t2)x(t1) exp

{
−1

~

∫ ∞

−∞
dτL(x, ẋ)

}
∫ b

a
Dx exp

{
−1

~

∫ ∞

−∞
dτL(x, ẋ)

}
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Part II

Monte Carlo integration and Markov chains
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The die is cast?

in rare situations, the path integrals can be computed exactly
simple harmonic oscillator, free particle

sometimes the action can be written S = S0 + gSI

S0 describes the free motion of the particles
path integrals using S0 are Gaussian and can be exactly computed
SI describes the interaction of the particles, but the coupling g is
small
compute in perturbation theory as expansion in g

however, if interactions are not weak
usually must resort to Monte Carlo methods

for example, quantum chromodynamics (QCD)

42 / 150



Simple Monte Carlo integration

trapezoidal/Simpson’s rule not feasible for integrals of very large
dimension: too many function evaluations
must start gambling!
basic theorem of Monte Carlo integration∫

V
f (~x) dDx ≈ V〈f 〉 ± V

√
〈f 2〉 − 〈f 〉2

N

〈f 〉 ≡ 1
N

N∑
i=1

f (~xi) 〈f 2〉 ≡ 1
N

N∑
i=1

f (~xi)
2

N points ~x1, . . . ,~xN chosen independently and randomly with
uniform probability dist. throughout D-dimensional volume V

justified by the law of large numbers/central limit theorem
in the limit N →∞, MC estimate tends to normal distribution,
uncertainty tends to standard deviation
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Quick review of probabilities

consider an experiment whose outcome depends on chance
represent an outcome by X called a random variable
sample space Ω of experiment is set of all possible outcomes
X is discrete if Ω is finite or countably infinite, continuous
otherwise
probability distribution for discrete X is real-valued function pX on
domain Ω satisfying pX(x) ≥ 0 for all x ∈ Ω and

∑
x∈Ω pX(x) = 1

for any subset E of Ω, probability of E is P(E) =
∑

x∈E pX(x)

a sequence of random variables X1,X2, . . . ,XN that are mutually
independent and have same distribution is called an independent
trials process
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Probability (continued)

for continuous real-valued X, real-valued function pX is a
probability density and probability of outcome between real
values a and b is P(a ≤ X ≤ b) =

∫ b
a pX(s)ds

cumulative distribution is FX(x) = P(X ≤ x) =
∫ x
−∞ pX(s)ds

common density: normal pX(x) =
1√
2πσ

e−(x−µ)2/(2σ2)
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Review: expected values

expected value of X is
E(X) =

∑
x∈Ω x pX(x)

(
=
∫∞
−∞ s pX(s)ds

)
properties: E(X + Y) = E(X) + E(Y) and E(cX) = cE(X)

for independent random variables X,Y have E(XY) = E(X)E(Y)

can show E(X) is average of outcomes if repeated many times
for continuous real-valued function f , can show that

E(f (X)) =
∑
x∈Ω

f (x) pX(x)
(

=

∫ ∞

−∞
f (s) pX(s) ds

)
Proof: group together terms in

P
xf (x)pX(x) having same f (x) value

denote set of different f (x) values by F , and subset of Ω leading to
same value of f (x) by Ωf (x), thenX

x∈Ω

f (x)pX(x) =
X
y∈F

X
x∈Ωf (x)

f (x)pX(x) =
X
y∈F

y (
X

x∈Ωf (x)

pX(x))

=
X
y∈F

yp(y) = E(f (x))
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Review: variances

variance of X is V(X) = E( (X − E(X))2 )

standard deviation of X is σ(X) =
√

V(X)

properties: V(cX) = c2V(X) and V(X + c) = V(X)

for independent random variables X,Y have
V(X + Y) = V(X) + V(Y) (exercise: prove this)
let X1, . . . ,XN be an independent trials process with E(Xj) = µ
and V(Xj) = σ2, and define AN = (X1 + X2 + · · ·+ XN)/N, then
can show E(AN) = µ, V(AN) = σ2/N
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Chebyshev inequality

Chebyshev inequality: Let X be a discrete random variable with
E(X) = µ and let ε > 0 be any positive real number, then

P(|X − µ| ≥ ε) ≤ V(X)

ε2

Proof:
Let pX(x) denote distribution of X, then probability that X differs
from µ by at least ε is P(|X − µ| ≥ ε) =

X
|x−µ|≥ε

pX(x)

considering positive summands and the ranges of summation,

V(X) =
X

x

(x− µ)2pX(x) ≥
X

|x−µ|≥ε

(x− µ)2pX(x) ≥
X

|x−µ|≥ε

ε2pX(x)

but rightmost expression is

ε2
X

|x−µ|≥ε

pX(x) = ε2P(|X − µ| ≥ ε)

thus, have shown V(x) ≥ ε2P(|X − µ| ≥ ε)
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Weak law of large numbers

Weak law of large numbers: Let X1,X2, . . . ,XN be an independent
trials process with E(Xj) = µ and V(Xj) = σ2, where µ, σ are
finite, and let AN = (X1 + X2 + · · ·+ XN)/N. Then for any ε > 0,

lim
N→∞

P(|AN − µ| ≥ ε) = 0, lim
N→∞

P(|AN − µ| < ε) = 1

Proof:
stated two slides ago that E(AN) = µ and V(AN) = σ2/N
from Chebyshev inequality

P(|AN − µ| ≥ ε) ≤ V(AN)

ε2 =
σ2

Nε2
N→∞−→ 0

also known as the law of averages
also applies to continuous random variables
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Strong law of large numbers

Strong law of large numbers: Let X1,X2, . . . ,XN be an
independent trials process with E(Xj) = µ and E(X4

j ) = K, where
µ,K are finite, then

P
(

lim
N→∞

(X1 + X2 + · · ·+ XN)/N = µ
)

= 1

the finiteness of E(X4
j ) is not needed, but simplifies proof

Proof:
define Yj = Xj − µ so E(Yj) = 0 and set E(Y4

j ) = C <∞
define AN = (Y1 + Y2 + · · ·+ YN)/N
given E(Yj) = 0 and all Yj are independent,

N4E(A4
N) = NE(Y4

j ) + 6
`n

2

´
E(Y2

i Y2
j ) = NC + 3N(N − 1)E(Y2

i )
2

since 0 ≤ V(Y2
j ) = E(Y4

j )− E(Y2
j )

2 then E(Y2
j )

2 ≤ E(Y4
j ) = C

so E(A4
N) ≤ C/N3 + 3C/N2 which means

E(
P∞

N=1 A4
N) =

P∞
N=1 E(A4

N) ≤
P∞

N=1

`
C

N3 + 3C
N2

´
<∞

this implies
P∞

N=1 A4
N <∞ with unit probability, and convergence of

the series implies limN→∞ A4
N = 0 ⇒ limN→∞ AN = 0

proves E(X) is average of outcomes for many repetitions
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Application to one-dimensional integral

if X is a random variable with probability density pX(x) and f is a
well-behaved real-valued function, then Y = f (X) is a random
variable

consider uniform density pX(x) =

{
1/(b− a) a ≤ x ≤ b
0 otherwise

use this probability density to obtain N outcomes X1,X2, . . . ,Xn

apply function f to obtain random variables Yj = f (Xj)

law of large numbers tell us that
1
N

N∑
j=1

Yj
N→∞−→ E(Y) = E(f (X)) =

1
(b− a)

∫ b

a
f (s)ds

define 〈f 〉 ≡ 1
N

N∑
j=1

f (Xj) then (b− a) lim
N→∞

〈f 〉 =

∫ b

a
f (s)ds

straightforward generalization to multiple dimensions
how good is estimate for finite N?
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Central limit theorem

Central limit theorem: Let X1,X2, . . . ,XN be independent random
variables with common distribution having E(Xj) = µ and
V(Xj) = σ2, where µ, σ are finite, and let
AN = (X1 + X2 + · · ·+ XN)/N. Then for a < b,

lim
N→∞

P
(

aσ√
N
< (AN − µ) <

bσ√
N

)
=

1√
2π

∫ b

a
e−x2/2dx

alternatively: the distribution of (X1 + · · ·+ XN − Nµ)/(σ
√

N)
tends to the standard normal (zero mean, unit variance)
for proof, consult the literature
for large N, the central limit theorem tells us that the error one
makes in approximating E(X) by AN is σ/

√
N =

√
V(X)/N

for Y = f (X) as before, the error in approximating E(f (X)) by∑
j f (Xj)/N is

√
V(f (X))/N

use Monte Carlo method to estimate V(f (X))

V(Y) = E((Y − E(Y))2) ≈ 〈(f − 〈f 〉)2〉 = 〈f 2〉 − 〈f 〉2
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Monte Carlo integration

recap of Monte Carlo integration:∫
V

f (~x) dDx ≈ V〈f 〉 ± V

√
〈f 2〉 − 〈f 〉2

N

〈f 〉 ≡ 1
N

N∑
i=1

f (~xi) 〈f 2〉 ≡ 1
N

N∑
i=1

f (~xi)
2

N points ~x1, . . . ,~xN chosen independently and randomly with
uniform probability dist. throughout D-dimensional volume V

law of large numbers justifies correctness of estimate
central limit theorem gives estimate of statistical uncertainty
in the limit N →∞, MC estimate tends to normal distribution,
uncertainty tends to standard deviation
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Pseudorandom number generators

MC integration requires random numbers
but computers are deterministic!!
clever algorithms can produce sequences of
numbers which appear to be random
(pseudorandom)

uniform deviates between 0 and 1
example: the Mersenne twister

http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html
currently holds the record for longest period 219937 − 1
very fast, passes all standard tests (Diehard) for good RNG

devising good RNGs is a science in itself
most utilize modulus function, bit shifting, shuffling
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One-dimensional example

simple example∫ 1

0
x(1− x) dx =

1
6

= 0.166666 · · ·

plot of integrand and some Monte Carlo estimates

not efficient for 1-dim integrals!
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Importance sampling

Monte Carlo method works best for flat functions, problems when
integrand sharply peaked
importance sampling can greatly improve efficiency of Monte
Carlo integration→ variance reduction
recall simple integration∫ b

a
f (x) dx ≈ (b− a)

N

N∑
j=1

f (xj)
xj chosen with uniform probability
between a and b

choose function g(x) > 0 with
∫ b

a g(x)dx = 1 so h(x) =
f (x)
g(x)

is as
close as possible to a constant∫ b

a
f (x)dx =

∫ b

a
h(x)g(x)dx ≈ (b− a)

N

N∑
j=1

h(xj)

where xj now chosen with probability density g(x)

must be able to sample with probability density g(x)

how to choose g(~x) for complicated multi-dimensional integral?
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Sampling non-uniform distributions

random number generators sample the uniform distribution
to sample other densities, apply transformation method
random variable U with uniform density pU(u) = 1 for 0 ≤ x ≤ 1
transform to new random variable Y = φ(U) where φ is a strictly
increasing function

strictly increasing function ensures inverse function is single-valued
also ensures that if u + du > u then y + dy > y for y = φ(u)

what is density pY?
from conservation of probability

pY(y)dy = pU(u)du pY(y) = pU(u)
du
dy

= pU(φ−1(y))
dφ−1(y)

dy
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Sampling non-uniform distributions (continued)

desired density pY is usually known, so must determine φ∫ u

0
du′ =

∫ φ(u)

φ(0)
pY(y)dy ⇒ u = FY(φ(u)) ⇒ φ(u) = F−1

Y (u)

F−1 unique since F is strictly increasing function
summary: random variable Y with density pY(y) and cumulative
distribution FY(y) =

∫ y
−∞ pY(s)ds can be sampled by sampling

with uniform deviate U then applying transformation

Y = F−1
Y (U)
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Exponential density

transformation method requires density whose indefinite integral
can be obtained and inverted
method useful for only a handful of density functions
one example: the exponential pY(y) = e−y/(1− e−b) for 0 ≤ y ≤ b

cumulative distribution FY(y) =
R y

0 pY(s)ds = (1− e−y)/(1− e−b)

inverse F−1
Y (u) = − ln

“
1− (1− e−b)u

”
example integral:

∫ 3

0

e−s ds
1 + s/9

≈ 0.873109

plot of integrand (left);
dramatic improvement
using importance
sampling (right)
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Rejection method

can sample from probability density whose cumulative
distribution is not easily calculable and invertible using the
rejection method
sampling from density pX(x) for a ≤ x ≤ b

⇒ equivalent to choosing a random point in two dimensions with
uniform probability in the area under curve pX(x)

simplest method: pick random point
with uniform probability in box
a ≤ x ≤ b horizontally and
0 ≤ y ≤ max(pX(x)) vertically

accept if below curve
reject if above curve, repeat until
acceptance

if pX(x) sharply peaked, use a comparison function f (x) satisfying
f (x) ≥ pX(x) for all a ≤ x ≤ b and which can be sampled by
transformation method
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Integrals of very high dimension

sampling methods described so far work well in one-dimension
for multi-dimensional integrals, transformation and rejection
methods not feasible
use of Markov chains to handle highly multi-dimensional integrals

Markov chains were introduced by
the Russian mathematician Andrei
Markov (1856-1922) in 1906
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Markov chains

discrete Markov chain: stochastic process which generates a
sequence of states with probabilities depending only on current
state

consider a system which can be in one of R states s1, s2, . . . , sR

system moves successively from one state to another
each move is called a step (discrete “time”)
if current state is si, then chain moves to state sj at next step with
probability pij which does not depend on previous states of chain
probabilities pij are called transition probabilities
the square R× R real-valued matrix P whose elements are pij is
called the transition matrix or the Markov matrix

time homogeneous if transition probabilities pij independent of
“time” or position in chain
definition generalizes to continuous set of states

leads to matrix of transition densities

will not deal with continuous-time chains here
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Some basic properties of Markov chains

transition matrix P has non-negative entries pij ≥ 0
since probability of going from si to any state must be unity, then
matrix elements must satisfy

∑R
j=1 pij = 1 (rows sum to unity)

if columns also sum to unity, P is called doubly stochastic matrix
if P1 and P2 are Markov matrices, then the matrix product P1P2 is
also a Markov matrix
every eigenvalue λ of a Markov matrix satisfies |λ| ≤ 1
every Markov matrix has at least one eigenvalue equal to unity
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Eigenvalues/eigenvectors of real square matrices

for a square matrix P, a nonzero column vector v which satisfies
Pv = λv for complex scalar λ is known as a right eigenvector
corresponding to eigenvalue λ

often, “right eigenvectors" are simply called “eigenvectors"

a nonzero vector v satisfying vTP = λvT , where T indicates
transpose, is known as a left eigenvector
every square R× R matrix has R complex eigenvalues, counting
multiple roots according to their multiplicity
for a real square matrix, the eigenvalues are either real or come
in complex conjugate pairs
eigenvectors for distinct eigenvalues are linearly independent
a degenerate eigenvalue may not have distinct eigenvectors
R linearly independent eigenvectors guaranteed only if all R
eigenvalues distinct
a matrix P and its transpose PT have the same eigenvalues
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Properties of Markov matrices (continued)

every eigenvalue λ of Markov matrix P satisfies |λ| ≤ 1
Proof: suppose complex number λ is an eigenvalue of P with
corresponding eigenvector v so that Pv = λv
let k be such that |vk| ≥ |vj| for all j
k-th component of eigenvalue equation gives us

P
j pkjvj = λvk

use generalized triangle inequality for complex numbers
|
P

k zk| ≤
P

k |zk| to show
|λvk| = |

P
j pkjvj| ≤

P
j pkj|vj| ≤

P
j pkj|vk| = |vk|

thus, |λvk| = |λ||vk| ≤ |vk| → |λ| ≤ 1

every Markov matrix P has a least one eigenvalue equal to unity
Proof: let v be a vector satisfying vj = 1 for all j
then

P
j pijvj =

P
j pij = 1 = vi

hence, v is an eigenvector corresponding to eigenvalue 1
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Multi-step probabilities

n-step transition probability: ij-th element p(n)
ij of matrix Pn is

probability that Markov chain, starting in state si, will be in state sj
after n steps

probability to go from si to sj in 2 steps is
PR

k=1 pikpkj

generalizes to n-steps

for starting probability vector u, probability that chain in state sj

after n steps is u(n)
j =

∑R
i=1 uip

(n)
ij

ui is probability starting state is si, matrix form u(n)T = uT Pn

first visit probability: the probability that a Markov chain, starting
in state si, is found for the first time in state sj after n steps→
denoted by f (n)

ij

define f (0)
ij = 0 one step, f (1)

ij = pij, two steps, f (2)
ij =

X
k 6=j

pikpkj

generalize f (n)
ij =

X
k 6=j

pik f (n−1)
kj

important relation for later user: p(n)
ij =

n∑
m=1

f (m)
ij p(n−m)

jj

66 / 150



Mean first passage and mean recurrence times

total visit probability: probability that, starting from state si, chain
will ever visit state sj:

fij =
∞∑

n=1

f (n)
ij

mean first passage time from si to sj is expected number of steps
to reach state sj in an ergodic Markov chain for the first time,
starting from state si → denoted by mij (by convention, mii = 0)

mij =
∞∑

n=1

n f (n)
ij

mean recurrence time µi of state si is expected number of steps
to return to state si for the first time in an ergodic Markov chain
starting from si

µi =
∞∑

n=1

n f (n)
ii
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Classes

state sj is accessible from state si if p(n)
ij > 0 for some finite n

− often denoted by si → sj

− if si → sj and sj → sk, then si → sk

states si and sj communicate if si → sj and sj → si

− denoted by si ↔ sj

− si ↔ sj and sj ↔ sk implies si ↔ sk

class = a set of states that all communicate with one another
if C1 and C2 are communicating classes, then either C1 = C2 or
C1,C2 are disjoint

if C1 and C2 have a common state si, then si ↔ sj1 for all sj1 ∈ C1

and si ↔ sj2 for all sj2 ∈ C2, so sj1 ↔ sj2 implying C1 = C2

set of all states can be partitioned into separate classes
if transition from class C1 to different class C2 is possible, then
transition from C2 to C1 not possible, otherwise C1 = C2
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Irreducible Markov chains

a Markov chain is called irreducible if the probability to go from
every state to every state (not necessarily in one step) is greater
than zero
all states in irreducible chain are in one single communicating
class
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Classification of states in Markov chains

states in a Markov chain are
(a) recurrent (persistent) or transient
− recurrent states are either positive or null

(b) periodic (cyclic) or aperiodic

recurrent or persistent state has fii =
∑∞

n=1 f (n)
ii = 1

unit probability of returning to state after a finite length

transient state has fii =
∑∞

n=1 f (n)
ii < 1

recurrent state is positive if mean recurrence time finite µi <∞
otherwise, called null
the period of a state in a Markov chain is the greatest common
divisor of all n ≥ 0 for which p(n)

ii > 0
transition si to si not possible except for multiples of period d(i)

periodic state si has period d(i) > 1
aperiodic state si has period d(i) = 1
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Recurrent and transient states

for a recurrent state,
∑∞

n=1 p(n)
ii =∞, whereas

for a transient state,
∑∞

n=1 p(n)
ii <∞

proof:
we start with the following:

NX
n=1

p(n)
ij =

NX
n=1

nX
m=1

f (m)
ij p(n−m)

jj =
NX

m=1

f (m)
ij

N−mX
n=0

p(n)
jj ≤

NX
m=1

f (m)
ij

NX
n=0

p(n)
jj

but for N > N′ we also have
NX

n=1

p(n)
ij =

NX
m=1

f (m)
ij

N−mX
n=0

p(n)
jj ≥

N′X
m=1

f (m)
ij

N−mX
n=0

p(n)
jj ≥

N′X
m=1

f (m)
ij

N−N′X
n=0

p(n)
jj

putting together above results:
N′X

m=1

f (m)
ij

N−N′X
n=0

p(n)
jj ≤

NX
n=1

p(n)
ij ≤

NX
m=1

f (m)
ij

NX
n=0

p(n)
jj

take N →∞ first, then N′ →∞ to get

fij

∞X
n=0

p(n)
jj ≤

∞X
n=1

p(n)
ij ≤ fij

∞X
n=0

p(n)
jj ⇒ fij

∞X
n=0

p(n)
jj =

∞X
n=1

p(n)
ij
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Recurrent and transient states (continued)

for a recurrent state,
∑∞

n=1 p(n)
ii =∞, whereas

for a transient state,
∑∞

n=1 p(n)
ii <∞

proof (continued):
so far have shown fij

P∞
n=0 p(n)

jj =
P∞

n=1 p(n)
ij

set i = j then fii(1 +
P∞

n=1 p(n)
ii ) =

P∞
n=1 p(n)

ii
so finally ∞X

n=1

p(n)
ii =

fii

1− fii

fii = 1 for a recurrent state and fii < 1 for a transient state, which
proves the above statements

note that the above results also imply
∞∑

n=1

p(n)
ij =

fij
1− fii
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Recurrent and transient states (furthermore)

a Markov chain returns to a recurrent state infinitely often
and returns to a transient state only a finite number of times
proof:

let gij(m) denote probability that chain enters state sj at least m
times, starting from si

clearly gij(1) = fij

one also sees gij(m + 1) = fijgjj(m) so gij(m) = (fij)
m

probability of entering sj infinitely many times is
gij = limm→∞ gij(m) = limm→∞(fij)

m

so starting in sj then

gjj = lim
m→∞

(fjj)
m =


1 for recurrent state fjj = 1
0 for transient state fjj < 1
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A crucial theorem about two sequences

important theorem: (the basic limit theorem)
given a sequence f0, f1, f2, . . . such that

f0 = 0, fn ≥ 0,
∞∑

n=0

fn = 1

and greatest common divisor of those n for which fn > 0 is d ≥ 1
and another sequence u0, u1, u2, . . . defined by

u0 = 1, un =
n∑

m=1

fmun−m (n ≥ 1)

then

lim
n→∞

und =

 dµ−1 if µ =
∞∑

n=1

nfn <∞

0 if µ =∞proof:
that will cost extra! please upgrade to the premium lectures
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Asymptotic behavior of p(n)
jj

asymptotic behavior of p(n)
jj can be summarized as

lim
n→∞

p(dn)
jj =


0 sj transient or null recurrent
µ−1

j sj aperiodic positive recurrent
dµ−1

j sj positive recurrent with period d
proof:

if sj transient,
P

n p(n)
jj finite (converges) requiring p(n)

jj → 0

for recurrent sj, let fn = f (n)
jj and un = p(n)

jj
sequences fn, un so defined satisfy conditions of basic limit theorem
basic limit theorem gives p(dn)

jj → dµ−1
j where µj =

P
n nf (n)

jj is mean
recurrence time
aperiodic case when d = 1
null recurrent sj has µj =∞ so p(n)

jj → µ−1
j = 0
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Asymptotic behavior of p(n)
ij

asymptotic behavior of p(n)
ij can be summarized as

lim
n→∞

p(n)
ij =

{
0 sj transient or null recurrent
fijµ−1

j sj aperiodic positive recurrent
ignore periodic case here
proof:

p(n)
ij =

nX
m=1

f (m)
ij p(n−m)

jj =
n′X

m=1

f (m)
ij p(n−m)

jj +
nX

m=n′+1

f (m)
ij p(n−m)

jj (n′ < n)

since 0 ≤
Pn

m=n′+1 f (m)
ij p(n−m)

jj ≤
Pn

m=n′+1 f (m)
ij then

0 ≤
“

p(n)
ij −

Pn′

m=1 f (m)
ij p(n−m)

jj

”
≤
Pn

m=n′+1 f (m)
ij (n′ < n)

take n→∞, then n′ →∞ above, denote pjj = limn→∞ p(n)
jj

0 ≤
“

limn→∞ p(n)
ij − pjjfij

”
≤ 0 ⇒ limn→∞ p(n)

ij = pjjfij

for sj transient or null recurrent, pjj = 0 and fij finite, so
limn→∞ p(n)

ij = 0

for sj aperiod positive recurrent, pjj = µ−1
j so p(n)

ij → fijµ
−1
j
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Important result for recurrent states

if si is recurrent and si → sj, then fji = 1
proof:

let α > 0 denote probability to reach sj from si without previously
returning to si

probability of never returning to si from sj is 1− fji

probability of never returning to si from si is at least α(1− fji)
but si is recurrent so probability of no return is zero
thus, fji = 1

for two communicating states si ↔ sj that are each recurrent, it
follows that fij = fji = 1
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Similarity of states in a class

all states in a class of a Markov chain are of the same type, and
if periodic, all have the same period
proof:

for any two states si and sj in a class, there exists integers r and s
such that p(r)

ij = α > 0 and p(s)
ji = β > 0 so

p(n+r+s)
ii =

X
kl

p(r)
ik p(n)

kl p(s)
li ≥

X
k

p(r)
ik p(n)

kk p(s)
ki ≥ p(r)

ij p(n)
jj p(s)

ji = αβp(n)
jj

suppose si has period t, then for n = 0, the right-hand side is
positive, so p(r+s)

ii > 0 which means that r + s must be a multiple of t
hence, left-hand side vanishes unless n is multiple of t, so p(n)

jj can
be nonzero only if n is multiple of t, so si and sj have same period
if si is transient, then left-hand side is a term of a convergent series,
so the same is true for p(n)

jj , and if p(n)
ii → 0, then p(n)

jj → 0
the same statements remain true if the roles of i and j are reversed,
so either both si and sj are transient, or neither is; also, if one is a
null state, then so is the other

chain aperiodic if pii > 0 for at least one si

78 / 150



Fact concerning finite Markov chains

in an irreducible chain having finite number R of states, there are
no null states and it is impossible that all states are transient
proof:

all rows of the matrix Pn must add to unity
since each row contains finite number of non-negative elements, it
is impossible that p(n)

ij → 0 for all i, j pairs
thus, impossible that all states are transient
so at least one state must be non-null
but since irreducible (one class), all states must be non-null

in an R-state irreducible Markov chain, it is possible to go from
any state to any other state in at most R− 1 steps
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Fixed-point or stationary distributions

a probability vector w is called stationary or invariant or a
fixed-point if wT = wTP
clearly, one also has wT = wTPn

the probability vector is always the same (stationary) for the chain
when this occurs, the Markov chain is said to be in equilibrium
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Fatou’s lemma

lemma: let an(t) for n = 1, 2, . . . be a function on a discrete set
T = {1, 2, . . . }, assume limn→∞ an(t) exists for each t in T, and
suppose an(t) ≥ 0 for all t, n, then∑

t∈T

(
lim

n→∞
an(t)

)
≤ lim

n→∞

∑
t∈T

an(t)

proof:
for any integer M

MX
t=1

“
lim

n→∞
an(t)

”
= lim

n→∞

MX
t=1

an(t) ≤ lim
n→∞

∞X
t=1

an(t)

since all an(t) ≥ 0
take limit M →∞ to obtain required result

example: an(t) =
n

n2 + t2

for n > t then lim
n→∞

an(t) = 0 so
∞X
t=1

“
lim

n→∞
an(t)

”
= 0

∞X
t=1

an(t) =
π

2
coth(nπ)− 1

2n
so lim

n→∞

∞X
t=1

an(t) =
π

2
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Dominated convergence theorem

theorem: let an(t) for n = 1, 2, . . . be a function on a discrete set
T = {1, 2, . . . }, assume limn→∞ an(t) exists for each t in T, and
suppose a function B(t) exists such that |an(t)| ≤ B(t) for all t, n
and

∑
t∈T B(t) <∞, then∑

t∈T

(
lim

n→∞
an(t)

)
= lim

n→∞

∑
t∈T

an(t)

proof:
let a(t)= lim

n→∞
an(t) and since |a(t)| ≤ B(t) then

∞X
t=1

a(t) converges

for any integer M˛̨̨ ∞X
t=1

an(t)−
∞X
t=1

a(t)
˛̨̨
≤

MX
t=1

|an(t)− a(t)|+
∞X

t=M+1

“
|an(t)|+ |a(t)|

”
now limn→∞

PM
t=1 |an(t)−a(t)| =

PM
t=1

“
limn→∞ |an(t)−a(t)|

”
= 0P∞

t=M+1

“
|an(t)|+|a(t)|

”
≤ 2

P∞
t=M+1 B(t)

so for any integer M˛̨̨
limn→∞

P∞
t=1 an(t)−

P∞
t=1 limn→∞ an(t)

˛̨̨
≤ 2

P∞
t=M+1 B(t)

right-hand side is remainder of convergent series so equals
zero in M →∞ limit
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Fundamental limit theorem for ergodic Markov chains

Theorem: an irreducible aperiodic Markov chain with transition
matrix P has a stationary distribution w satisfying wj > 0,∑

j wj = 1, and wT = wTP if, and only if, all its states are positive
recurrent, and this stationary distribution is unique and identical
to the limiting distribution wj = limn→∞ p(n)

ij independent of initial
state si

Proof:
for irreducible aperiodic chain, the following possibilities exist:

(a) all states are positive recurrent
(b) all states are null recurrent
(c) all states are transient

if all states transient or null recurrent, limn→∞ p(n)
ij = 0

if all states positive recurrent, then since all states communicate,
fij = 1 for all i, j and previous result becomes lim

n→∞
p(n)

ij = µ−1
j

can define wj = lim
n→∞

p(n)
ij which is independent of initial state si

for all states positive recurrent, then 0 < µj <∞ so wj > 0 for all j
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Fundamental limit theorem (2)

Theorem: an irreducible aperiodic Markov chain with transition
matrix P has a stationary distribution w satisfying wj > 0,∑

j wj = 1, and wT = wTP if, and only if, all its states are positive
recurrent, and this stationary distribution is unique and identical
to the limiting distribution wj = limn→∞ p(n)

ij independent of initial
state si

Proof (continued):
we have p(m+n)

ij =
P∞

k=1 p(n)
ik p(m)

kj so using Fatou’s lemma:

limn→∞ p(m+n)
ij = limn→∞

P∞
k=1 p(n)

ik p(m)
kj ≥

P∞
k=1 limn→∞ p(n)

ik p(m)
kj

taking the limit n→∞ yields wj ≥
P∞

k=1 wk p(m)
kj

define s ≡
P∞

k=1 wk then sum above equation over j:

s =
∞X
j=1

wj ≥
∞X
j=1

∞X
k=1

wk p(m)
kj =

∞X
k=1

wk

∞X
j=1

p(m)
kj =

∞X
k=1

wk = s

interchanging order of the two infinite summations is possible since
all summands non-negative (Fubini’s theorem)
since s ≥ s, equality must hold for all j: wj =

∞X
k=1

wk p(m)
kj

84 / 150



Fundamental limit theorem (3)

Theorem: an irreducible aperiodic Markov chain with transition
matrix P has a stationary distribution w satisfying wj > 0,∑

j wj = 1, and wT = wTP if, and only if, all its states are positive
recurrent, and this stationary distribution is unique and identical
to the limiting distribution wj = limn→∞ p(n)

ij independent of initial
state si

Proof (continued):
have shown wj =

P∞
k=1 wk p(m)

kj
for m = 1, we see the limiting vector w is stationary!!
next, from

P∞
j=1 p(n)

ij = 1 then use Fatou:
1 = limn→∞

P∞
j=1 p(n)

ij ≥
P∞

j=1 limn→∞ p(n)
ij =

P∞
j=1 wj

given
P

j wj ≤ 1 then consider the limit m→∞ of
wj = limm→∞

P∞
k=1 wk p(m)

kj
since 0 ≤ p(m)

kj ≤ 1 then |wkp(m)
kj | ≤ wk and

P∞
k=1 wk <∞ so the

dominated convergence theorem can be applied

wj = lim
m→∞

∞X
k=1

wk p(m)
kj =

∞X
k=1

wk lim
m→∞

p(m)
kj =

“ ∞X
k=1

wk

”
wj

can at last conclude
∞X
j=1

wj = 1
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Fundamental limit theorem (4)

Theorem: an irreducible aperiodic Markov chain with transition
matrix P has a stationary distribution w satisfying wj > 0,∑

j wj = 1, and wT = wTP if, and only if, all its states are positive
recurrent, and this stationary distribution is unique and identical
to the limiting distribution wj = limn→∞ p(n)

ij independent of initial
state si

Proof (continued):
only uniqueness of stationary state to show
if another stationary vector v existed, it would have to satisfy vj > 0,P∞

j=1 vj = 1, and vj =
P∞

i=1 vip
(n)
ij

conditions for dominated convergence theorem again apply, so
taking n→∞ limit gives

vj = lim
n→∞

∞X
i=1

vip
(n)
ij =

∞X
i=1

vi lim
n→∞

p(n)
ij =

“ ∞X
i=1

vi

”
wj = wj

since v = w, then w is unique
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An example

consider the following transition matrix P =


3
4

1
4 0

0 2
3

1
3

1
4

1
4

1
2


P2 all positive entries, so chain is irreducible
eigenvalues are 1, 1

2 ,
5

12

right and left eigenvectors (unnormalized) are

right:

1 1
1
1


1
2 2
−2

1


5

12 3
−4

3

 left:

1 2
3
2


1
2 −1
0
1


5
12 −3
−1

4


left fixed-point probability vector

w =
1
7

 2
3
2

 lim
n→∞

Pn = W =
1
7

 2 3 2
2 3 2
2 3 2
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Summary of results

positive recurrent chain guarantees existence of at least one
invariant probability vector
irreducibility guarantees uniqueness of invariant probability
vector
aperiodicity guarantees limit distribution coincides with invariant
distribution
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Equilibrium in Markov chains

suppose a Markov chain is started with probability vector given
by w, the left fixed-point vector of the transition matrix P
this means the probability of starting in state si is wi

the probability of being in state sj after n steps is (wTPn)j, but
wTPn = wT , so this probability is wj

thus, the probability vector is always the same, that is, it is
stationary or invariant
when this occurs, the Markov chain is said to be in equilibrium
recall that an ergodic Markov chain which starts in any
probability vector y eventually tends to equilibrium
the process of bringing the chain into equilibrium from a random
starting probability vector in known as thermalization

89 / 150



Reversibility in Markov chains

an ergodic Markov chain is reversible if the probability of going
from state si to sj is the same as that for going from state sj to si

once the chain is in equilibrium
the probability that a transition from si to sj occurs is the
probability wi of finding the chain in state si in equilibrium times
the transition probability pij

reversibility occurs when wipij = wjpji

the above condition is often referred to as detailed balance
note that detailed balance guarantees the fixed-point condition:
since

∑
j pij = 1 then∑

j

wjpji =
∑

j

wipij = wi
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Law of large numbers for Markov chains

consider an R-state ergodic Markov chain which starts in state si

define X(m)
j =

{
1 if chain in state sj after m steps
0 otherwise

define N(n)
j as number of times chain in state sj in first n steps

N(n)
j = X(1)

j + X(2)
j + · · ·+ X(n)

j

often called occupation times

expected value E(X(m)
j ) = p(m)

ij so

E(N(n)
j ) =

∑n
h=1 p(h)

ij

it can be shown that
lim

n→∞
E(N(n)

j )/n = wj

can show law of large numbers for ergodic Markov chain:

P(|N(n)
j /n− wj| > ε)→ 0 as n→∞

also require
∑∞

n=1 n2p(n)
ii <∞

91 / 150



Central limit and ergodic theorem for Markov chains

can show a central limit holds

lim
n→∞

P

(
aσj√

n
<

(
N(n)

j

n
− wj

)
<

bσj√
n

)
=

1√
2π

∫ b

a
e−x2/2dx

where σj depends on wj

distributions of random variables N(n)
j tend to normal distributions

let X1,X2, . . . ,Xn be the actual outcomes that make up an ergodic
R-state Markov chain
from the definition of X(n)

j , it follows that
∑R

j=1 X(n)
j = 1 so

1
n

n−1∑
h=0

f (Xh) =
1
n

n−1∑
h=0

R∑
j=1

X(h)
j f (sj) =

R∑
j=1

N(n)
j f (sj)→

R∑
j=1

wj f (sj)

Markov-chain “time"-average approaches required ensemble
average!!
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Monte Carlo integration

recap of Markov-chain Monte Carlo integration:∫
V

f (~x) dDx ≈ V〈f 〉 ± V

√
〈f 2〉 − 〈f 〉2

N

〈f 〉 ≡ 1
N

N∑
i=1

f (~xi) 〈f 2〉 ≡ 1
N

N∑
i=1

f (~xi)
2

each point in D-dimensional volume V is a state of a Markov
chain
N points ~x1, . . . ,~xN are elements in an ergodic Markov chain
law of large numbers justifies correctness of estimate
central limit theorem gives estimate of statistical uncertainty

above formula for error assumes the ~xj are statistically independent
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What’s the catch?

Monte Carlo estimates require statistically independent random
configurations
configurations generated by Markov process depend on previous
elements in the chain
this dependence known as autocorrelation
this autocorrelation can actually be measured!
for any observable (integrand) Oi, autocorrelation %(τ) defined by

〈OiOi+τ 〉 − 〈Oi〉2

〈O2
i 〉 − 〈Oi〉2highly correlated→ value near 1

independent→ value near 0

dependence decreases as distance between elements in chain
increases

do not use every element in chain for “measurements"
skip some number of elements between measurements
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Constructing the transition probability

generally know probability density π(φ) we need to sample
for our path integrals, we need to generate paths with probability
distribution

π(φ) =
e−S[φ]/~∫ b

a
Dφ′ e−S[φ′]/~

in imaginary time formalism, path integral weight is real and
positive→ probability interpretation for Monte Carlo

how do we construct the Markov transition matrix P(φ̃← φ)?
change to quantum mechanical notation of putting earlier states on
right, later states on left

simplest answer to this question is

the Metropolis-Hastings method

useful for local updating so changes to action are small
probability normalization never enters in the calculation!
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The Metropolis-Hastings algorithm

this method uses an auxiliary proposal density R(φ̃← φ) which
must be normalized
can be evaluated for all φ, eφ
can be easily sampled
no relationship to the fixed-point probability density π(φ) needed

given this proposal density, the Metropolis-Hastings method
updates φ→ φ̃ as follows:

1 use R(eφ← φ) to propose new value eφ from current value φ
2 accept the new value with probability

Pacc(eφ← φ) = min

 
1,

R(φ← eφ)π(eφ)

R(eφ← φ)π(φ)

!
3 if rejected, the original value φ is retained

if proposal density satisfies reversibility R(φ̃← φ) = R(φ← φ̃),
then acceptance probability reduces to min(1, π(φ̃)/π(φ))

original Metropolis method
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Detailed balance in Metropolis-Hastings

Metropolis-Hastings satisfies detailed balance
proof:

(normalized) transition probability density is
W(eφ← φ) = Pacc(eφ← φ)R(eφ← φ)

+δ(eφ− φ)

„
1−

Z
Dφ Pacc(φ← φ)R(φ← φ)

«
define

A(eφ← φ) ≡ Pacc(eφ← φ)R(eφ← φ)π(φ)

= min

 
1,

R(φ← eφ)π(eφ)

R(eφ← φ)π(φ)

!
R(eφ← φ)π(φ)

= min
“

R(eφ← φ)π(φ), R(φ← eφ)π(eφ)
”

where last line follows from R(eφ← φ)π(φ) ≥ 0

symmetric: A(eφ← φ) = A(φ← eφ).
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Detailed balance in Metropolis-Hastings (continued)

so we have
W(eφ← φ)π(φ) = Pacc(eφ← φ)R(eφ← φ)π(φ)

+ δ(eφ− φ)

„
1−

Z
Dφ Pacc(φ← φ)R(φ← φ)

«
π(φ)

= A(eφ← φ) + δ(eφ− φ)
“
π(φ)−

Z
Dφ A(φ← φ)

”
= A(eφ← φ) + δ(eφ− φ) K(φ)

where
K(φ) = π(φ)−

Z
DφA(φ← φ)

given symmetry of A and Dirac δ-function, then detailed balance
holds W(eφ← φ)π(φ) = W(φ← eφ)π(eφ)
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A one dimensional example

does this really work?

let g(x) = cos(
√

1 + x2) and h(x) = e−x2
/(x2 + 2)

g(x) changes sign, h(x) ≥ 0

consider ratio of integrals I =

∫∞
−∞ g(x)h(x)dx∫∞
−∞ h(x)dx

= 0.3987452

sampling density π(x) = Z−1h(x) where Z =
∫∞
−∞ h(x)dx

algorithm:
choose δ uniform probability for
−∆ ≤ δ ≤ ∆
propose ex = x + δ
acceptance probability
min(1, π(ex)/π(x))=min(1, h(ex)/h(x))

∆ = 1.5 for acceptance ∼ 50%

never needed Z
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Part III

Monte Carlo study of the
simple harmonic oscillator
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Discretization of SHO action

action of harmonic oscillator (imaginary time formalism)

S[x(τ)] =

∫ τb

τa

dτ
( 1

2 mẋ2 + 1
2 mω2x2

)
discretize time Nε = τb − τa for Monte Carlo evaluation

S
~

=
mε
2~

N−1∑
j=0

[(
xj+1−xj

ε

)2

+ω2
(

xj+1+xj

2

)2
]

choose ε so discretization errors sufficiently small
introduce dimensionless parameters

xk = dk

√
ε~
m

κ =
1
4
ε2ω2

S
~

=
1
2

N−1∑
j=0

[
(dj+1−dj)

2+κ(dj+1+dj)
2]
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Discretization of action (continued)

a few more manipulations produce

S
~

=
1
2
(1 + κ)(d2

0 + d2
N) + (1+κ)

N−1∑
j=1

d2
j

− (1−κ)

N−1∑
j=0

djdj+1


first constant irrelevant (set to zero), then one last rescaling

uj = dj
√

1 + κ g =
1− κ
1 + κ

d0 = dN = 0

final result for action

S
~

=

N−1∑
j=1

u2
j

− g

N−1∑
j=0

ujuj+1
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Metropolis updating of path

to update location (at a single time)
propose random shift −∆ ≤ δ ≤ ∆ with uniform probability
calculate change to the action

δS/~ = δ (δ + 2uj − g(uj−1 + uj+1))

accept unew
j = uj + δ with probability min(1, e−δS/~)

rule of thumb: fix ∆ for about 50% acceptance rate
lower rate = wasting too much time with rejections
higher rate = moving through phase space too slowly

repeat for each uj for j = 1, . . . ,N − 1 (this is called one sweep)
repeat for certain number of sweeps

until autocorrelations sufficiently small
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Actual C++ code

here is actual C++ code which does the updating

void markov::update()
{
double shift,deltaS;

for (int i=1;i<=Nsweeps;i++)

for (int t=1;t<Ntimesteps;t++){

// propose shift in location[t]
shift=2.0*max_shift_per_instance*(rng.generate()-0.5);

// compute change in action
deltaS=shift*(shift+2.0*locations[t]

-hop_param*(locations[t-1]+locations[t+1]));

// Metropolis accept or reject
if (deltaS<0.0) accept=1;
else accept=(rng.generate()<=exp(-deltaS));
if (accept) locations[t]+=shift;

}

}
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Simulation guidelines

to start Markov chain
choose a random path (hot start)
or choose uj = 0 for all j (cold start)
update Ntherm sweeps until fixed point of chain achieved
(thermalization)→ check some simple observable

once thermalized, begin “measurements"
must choose

ε so discretization errors sufficiently small
∆ for adequate acceptance rate
Nsweeps for sufficiently small autocorrelations
Nmeas for desired precision of results
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Path animation

animation of first 100 time slices of uj path

−4

0

4
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Acceptance rate and autocorrelations

choose ∆ so acceptance rate near 0.5
choose Nsweeps so autocorrelations near 0.1
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Correlation function

comparison of final Monte Carlo estimates with exact results

exact result shown as curve
Monte Carlo estimates
shown by circles (statistical
uncertainties too small to
see)
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Part IV

Monte Carlo calculations in
real scalar field theory

in 2+1 dimensions
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Action in continuous space-time

action in continuous Euclidean D-dimensional space-time
(imaginary time formalism) given by

S =

∫
dDx

(
1
2
∂µϕ(x)∂µϕ(x) +

1
2

m2ϕ(x)2 +
g
4!
ϕ(x)4

)
.

action must be dimensionless (natural units ~ = c = 1)
m has units of a derivative ∂µ, that is, of a mass

units of field [φ] = [m]
1
2 D−1

coupling g has units [g] = [m]4−D

coupling dimensionless in 4 space-time dimensions
has units of mass in 3 space-time dimensions so g/m
dimensionless
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Quantization

quantization using path integrals
generalize notion of “path”: a path here is a field configuration
path integral is now integrations over all field configurations
for real scalar field, integral −∞ ≤ φ(x) ≤ ∞ at every space-time
point x

time-ordered two-point function given by

〈Tφ(x1)φ(x2)〉 =

∫
Dφ φ(x1)φ(x2) exp(−S[φ])∫

Dφ exp(−S[φ])
.

generalizes to n-point functions: time-ordered product of n fields
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Discretization of action

Monte Carlo study requires action on a space-time lattice
use anisotropic cubic lattice with temporal lattice spacing at and
spatial lattice spacing as

use simplest finite difference for the field derivatives
action is given by

S = aD−1
s at

∑
x

(∑
µ

(ϕ(x+aµµ̂)−ϕ(x))2

2a2
µ

+
1
2

m2ϕ(x)2+
g
4!
ϕ(x)4

)

= aD−1
s at

∑
x

(
−
∑

µ

ϕ(x+aµµ̂)ϕ(x)
a2

µ

+
1
2

(
m2+

∑
ν

2
a2

ν

)
ϕ(x)2+

g
4!
ϕ(x)4

)
redefine the field:

√
aD−3

s at ϕ(x) =
√

2κs φ(x)

where κs is dimensionless number, new field φ(x) is
dimensionless
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Action on lattice

a few more dimensionless parameters:

as/at = ζ, λ =
gζκ2

s

6aD−4
s

,

κs(a2
s m2 + 2ζ2 + 2D− 2) = 1− 2λ, κ = ζκs

final form for lattice action

S =
∑

x

(
−2κ
ζ

D−1∑
j=1

φ(x)φ(x+aŝj)− 2κζ φ(x)φ(x+at̂t)

+(1− 2λ)φ(x)2 + λφ(x)4
)

hopping parameter κ essentially sets mass parameter, λ is
interaction coupling
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Exact results in free field theory

the free field theory λ = 0 is exactly soluable
path integrals are multivariate gaussians
free action can be written in form

S[φ] = 1
2

∑
xy

φ(x)M(x, y)φ(y)

for N lattice sites, M is real and symmetric N × N matrix having
positive eigenvalues
this matrix given by

M(x, y) = −2κ
ζ

D−1∑
j=1

(
δ(y, x+aŝj) + δ(x, y+aŝj)

)
−2κζ (δ(y, x+at̂t) + δ(x, y+at̂t)) + 2δ(x, y)

114 / 150



Gaussian integrals in free theory

N-dimensional multivariate Gaussian integral of form
N∏

i=1

(∫ ∞

−∞
dφi

)
exp(− 1

2φjMjkφk + Jnφn)

=

(
det
(

M
2π

))−1/2

exp
(

1
2 JjM−1

jk Jk

)
J-trick: use derivatives wrt to Jk, followed by Jk → 0 to evaluate all
integrals involving any number of products of the fields

N∏
i=1

(∫ ∞

−∞
dφi

)
φm1φm2 . . . φmr exp(− 1

2φjMjkφk)

=
δ

δJm1

· · · δ

δJmr

N∏
i=1

(∫ ∞

−∞
dφi

)
exp(− 1

2φjMjkφk + Jnφn)

does Wick contractions automagically!
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Two-point function

two-point function given by 〈Tφ(x1)φ(x2)〉 = M−1(x1, x2)

invert M by method of Green functions and use Fourier series
for Lx × Ly × Lt lattice, result is

M−1(x, y) =
ζ

2κLxLyLt

∑
kµ

cos(k·(x−y))

(a2
s m2 + 4

∑2
j=1 sin2( 1

2 kj) + 4ζ2 sin2( 1
2 kt))

where kµ = 2πnµ/Lµ for nµ = 0, 1, 2, . . . ,Lµ − 1
pole gives energy atEp of single particle of momentum asp

atEp = 2 sinh−1
(

1
2ζ

√
a2

s m2 + 4 sin2( 1
2 aspx) + 4 sin2( 1

2 aspy)

)
for small at, as this becomes Ep =

√
m2 + p2

x + p2
y

spectrum is sum of free particle energies
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Single-site Monte Carlo updating

Metropolis-Hastings method needs acceptable acceptance rate
changing all field values at once generally leads to large changes
in action→ near zero acceptance rate
reasonable acceptance rate achieved by updating field at a
single lattice site at any given time
ergodicity ensured by sweeping through lattice, updating each
and every site one at a time
in battle against autocorrelations, expect

small wavelength modes updated well
long wavelength modes updated not so well
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δS for single-site update

recall action is

S =
∑

x

(
−2κ
ζ

D−1∑
j=1

φ(x)φ(x+aŝj)− 2κζ φ(x)φ(x+at̂t)

+(1− 2λ)φ(x)2 + λφ(x)4
)

for φ̃← φ, change in action is δS = S[φ̃]− S[φ]

define neighborhood

N(x) = −2κ
ζ

D−1∑
j=1

(
φ(x+aŝj)+φ(x−aŝj)

)
−2κζ

(
φ(x+at̂t)+φ(x−at̂t)

)
if field at one site x changed φ(x)→ φ(x) + ∆, then

δS = ∆

(
N(x)+(∆+2φ(x))

(
1+λ

(
(∆+2φ(x))∆+2(φ(x)2−1)

)))
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δS for single-site update (continued)

change in action can also be written

δS = ∆ (a0 + a1∆ + a2∆
2 + a3∆

3),

a0 = N(x) + 2φ(x)(1 + 2λ(φ(x)2 − 1))

a1 = 1 + 2λ(3φ(x)2 − 1)

a2 = 4λφ(x)

a3 = λ
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Metropolis sweeps

single-site updates involve a single continuous real variable φ
use simplest proposal density

R(φ̃← φ) =


1

∆0
− 1

2∆0 ≤ (φ̃− φ) ≤ 1
2∆0

0 |φ̃− φ| > 1
2∆0

width ∆0 chosen for acceptance probability around 50%
proposed new value accepted with probability min(1, exp(−δS))

if rejected, keep current field value
sweeping through lattice ensures ergodicity
in sweeping through the lattice in predetermined order, detailed
balance no longer holds

not a problem since the fixed-point stability condition still holds
detailed balance maintained by updating sites in random order
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Battling autocorrelations

when the single particle mass atmgap is small, the coherence
length ξ = 1/(atmgap) becomes large
ξ →∞ signals continuum limit
ξ →∞ occurs near critical point (2nd order phase transition)
we will see that autocorrelations with Metropolis updating
become long ranged as ξ becomes large

→ known as critical slowing down
autocorrelations problematic even for ξ ≈ 5 with Metropolis
need help to better update long wavelength modes
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Microcanonical updating

long wavelength modes are associated with lower frequencies,
lower energies
in other words, long-wavelength modes associated with very
small changes to the action
possible way to improve autocorrelations:

→ make large but action preserving δS = 0 changes
to field at one site

call this a microcanonical update
often referred to as overrelaxation

local updating is so easy, don’t want to give up on it yet!
must still update in such a way to satisfy detailed balance
not ergodic, so microcanonical sweeps must be used in
combination with ergodic scheme, such as Metropolis sweeps
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Microcanonical updating (2)

we know Metropolis-Hasting method satisfies detailed balance
choose proposal density strongly peaked about
action-preserving value of field, then carefully take δ-function limit
revisit Metropolis-Hastings with sharply-peaked Breit-Wigner
proposal probability density

Rf (φ̃← φ) =
1
π

ε(
φ̃− f (φ)

)2
+ ε2

where ε is a constant and f (φ) is well-behaved, single-valued,
invertible function
acceptance probability

Pacc(φ̃←φ)=min

(
1,

Rf (φ← φ̃)π(φ̃)

Rf (φ̃←φ)π(φ)

)
=min

1,

(
(φ̃−f (φ))2+ε2

)
π(φ̃)(

(φ−f (φ̃))2+ε2
)
π(φ)
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Microcanonical updating (3)

carefully take ε→ 0 limit: Rf (φ̃← φ)→ δ(φ̃− f (φ))

determining acceptance probability is tricky
probability of proposing a value between
f (φ)−

√
ε ≤ φ̃ ≤ f (φ) +

√
ε is∫ f (φ)+

√
ε

f (φ)−
√

ε

dφ̃ Rf (φ̃← φ) =
2
π

tan−1
(

1√
ε

)
which does tends to unity as ε→ 0
if f (φ) more than

√
ε away from φ, probability transition is actually

made is∫ f (φ)+
√

ε

f (φ)−
√

ε

dφ̃ Wf (φ̃← φ) =

∫ f (φ)+
√

ε

f (φ)−
√

ε

dφ̃ Pacc(φ̃← φ)Rf (φ̃← φ)

= min

 2
π

tan−1
(

1√
ε

)
,

1
π

∫ f (φ)+
√

ε

f (φ)−
√

ε

dφ̃
ε π(φ̃)(

(φ− f (φ̃))2 + ε2
)
π(φ)
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Microcanonical updating (4)

write φ̃ = f (φ) + y, then remaining integral becomes

1
π

∫ √
ε

−
√

ε

dy
ε π(f (φ) + y)(

(φ− f (f (φ) + y))2 + ε2
)
π(φ)

if f (f (φ)) 6= φ, can show this integral goes to zero as ε→ 0
for self-inverse function f (f (φ)) = φ, expansion about y = 0 must
be carefully done, integral has form

ε

π

∫ √
ε

−
√

ε

dy
(a0 + a1y + a2y2 + . . . )

(ε2 + b2y2 + b3y3 + b4y4 . . . )

must retain b2y2 in denominator, expand rest about y = 0:

ε

π

∫ √
ε

−
√

ε

dy
a0

(ε2 + b2y2)

{
1 +

a1

a0
y +

a2

a0
y2 +

(
a3

a0
− b3

ε2

)
y3 . . .

}
for b2 > 0, result of integration is

2a0

π
√

b2
tan−1

(√
b2

ε

){
1 + d1

√
ε+ d2ε+ d3ε

3/2 + · · ·
}
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Microcanonical updating (5)

acceptance probability in limit ε→ 0 given by

Pacc = min
(

1,
a0√
b2

)
here a0 = π(f (φ))/π(φ) and b2 = (f ′(f (φ)))2

differentiate both sides of f (f (φ)) = φ with respect to φ, so for
self-inverse function

1 =
d

dφ

(
f (f (φ))

)
= f ′(f (φ)) f ′(φ)

1
(f ′(f (φ)))2 =

∣∣∣∣ f ′(φ)

f ′(f (φ))

∣∣∣∣ (self-inverse function)

take limit ε→ 0 acceptance probability goes to

Pacc(φ̃← φ) = min

1,

√
|f ′(φ)| π(φ̃)√
|f ′(φ̃)| π(φ)
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Microcanonical updating (6)

specialize to action preserving function f (φ)

for infinitesimal change φ→ φ+ δφ

S(φ+ δφ) = S(f (φ+ δφ))

expand both sides

S(φ) + S′(φ)δφ+ O(δφ2) = S(f (φ) + f ′(φ)δφ+ O(δφ2))

= S(f (φ)) + S′(f (φ)) f ′(φ)δφ+ O(δφ2)

= S(φ) + S′(f (φ)) f ′(φ)δφ+ O(δφ2).

solve order by order in δφ
S′(φ) = S′(f (φ)) f ′(φ) → f ′(φ) =

S′(φ)

S′(f (φ))
, f ′(f (φ)) =

S′(f (φ))

S′(φ)

proposal and acceptance probability densities are

Rf (φ̃← φ) = δ
(
φ̃− f (φ)

)
, f (f (φ)) = φ, S(f (φ)) = S(φ),

Pacc(φ̃← φ) = min

(
1,

∣∣∣∣∣S′(φ)

S′(φ̃)

∣∣∣∣∣
)
, π(φ) =

exp(−S[φ])∫
Dφ̃ exp(−S[φ̃])
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Microcanonical updating (7)

generalize to multiple self-inverse functions
for φ4 at most four field values with same local action

generalize to probability µ of proposing a change
sometimes need µ < 1 to prevent (damped) oscillations in
autocorrelation function

summary of microcanonical updating process:
1 decide to propose new field value with probability µ (skip steps

below if no proposal)
2 solve δS(φ) = 0, let φj denote real solutions different from φ

these are roots of a cubic polynomial
3 randomly choose one of the φj with equal probability, let eφ denote

the chosen value
4 accept with probability

Pacc(eφ← φ) = min

 
1,

˛̨̨̨
˛S′(φ)

S′(eφ)

˛̨̨̨
˛
!

if rejected, original value φ retained
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Autocorrelations

studied autocorrelation function ρ(τ) of 〈Φ(t)Φ(0)〉 for
t = 1/(2asm) and Φ(t) =

∑
xy φ(x, y, t)

τ is number of Metropolis sweeps in plots below
asm = 0.10, 0.25, 0.50 for λ = 0 on 243 isotropic lattice
2200 sweeps to reduce autocorrelations to 0.1 for asm = 0.10
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Autocorrelations

autocorrelations ρ(τ) of 〈Φ(t)Φ(0)〉 for t = 1/(2asm)
τ is number of compound sweeps,
compound sweep = 1 Metropolis + 1 microcanonical sweep
µ is probability of proposing change in microcanonical updates
asm = 0.10, 0.25, 0.50 for λ = 0 on 243 isotropic lattice
undesirable oscillations on left removed using µ = 0.98 or
updating sites in random order
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Autocorrelations

autocorrelations ρ(τ) of 〈Φ(t)Φ(0)〉 for t = 1/(2asm)
τ is number of compound sweeps
compound sweep = 1 Metropolis + Nµ microcanonical sweeps
µ is probability of proposing change in microcanonical updates
asm = 0.10 for λ = 0 on 243 isotropic lattice
left-hand plot, Nµ = 1 and µ is varied
right-hand plot, µ = 0.98 and Nµ is varied
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Autocorrelations

autocorrelations ρ(τ) of 〈Φ(t)Φ(0)〉 for t = 1/(2asm)

τ is number of compound sweeps
compound sweep = 1 Metropolis + Nµ microcanonical sweeps
µ = 0.98 probability of proposing change in microcanonical
asm = 0.25, 0.50 for λ = 0 on 243 isotropic lattice
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Calculating the spectrum

stationary-state energies extracted from asymptotic decay rates
of temporal correlations of the fields
temporal evolution of field as Heisenberg-picture quantum
operator

φ(t) = eHtφ(0)e−Ht

under certain general assumptions and ignoring temporal
boundary conditions, then for t ≥ 0

〈0|φ(t)φ(0)|0〉 =
∑

n

〈0|eHtφ(0)e−Ht|n〉〈n|φ(0)|0〉,

=
∑

n

∣∣∣〈n|φ(0)|0〉
∣∣∣2e−(En−E0)t =

∑
n

Ane−(En−E0)t,

where complete set of (discrete) eigenstates of H satisfying
H|n〉 = En|n〉 inserted
if 〈1|φ(0)|0〉 6= 0, then A1 and E1 − E0 can be extracted as t
becomes large, assuming 〈0|φ(0)|0〉 = 0
can use any operator O(t) which is a function of the field φ(t) only
on a time slice t
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Calculating the spectrum (2)

extraction of A1 and E1 − E0 done using correlated−χ2

χ2 =
∑

tt′

(
C(t)−M(t, α)

)
σ−1

tt′

(
C(t′)−M(t′, α)

)
where C(t) represents Monte Carlo estimates of correlation
function with covariance matrix σtt′ and model function is
M(t, α) = α1e−α0t.
minimize expression with respect to the model parameters α0, α1

uncertainties in the best-fit parameters α0 = E1 − E0 and α1 = A1
are obtained by a jackknife or bootstrap procedure
fit must be done for a time range tmin ≤ t ≤ tmax such that an
acceptable fit quality is obtained, that is, χ2/dof ≈ 1
sum of two-exponentials as model function can be used to
minimize sensitivity to tmin

but fit parameters associated with faster-decaying exponential
generally not good estimates of gap to next energy level and
should be discarded
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Jackknife resampling

return to independent trials process X1,X2, . . . ,XN

expected value E(f (X)) estimated using 〈f 〉 = 1
N

∑N
k=1 f (Xk)

sometimes f is a very complicated function, or it could be a
function of the expected value!
propagation of errors often not possible→ resampling schemes
let 〈f 〉 denote Monte Carlo estimate of some quantity f using all
Xk for k = 1, 2, . . . ,N
let 〈f 〉J denote Monte Carlo estimate of f omitting XJ (so use the
other N − 1 values Xk)
jackknife error estimate given by

σ(J) =

(
N − 1

N

N∑
J=1

(〈f 〉J − 〈f 〉)2

)1/2

Monte Carlo error formula can be used to determine covariance
matrix σtt′ for correlation function itself in χ2

jackknife gives errors in model fit parameters
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Bootstrap resampling

another resampling scheme is the bootstrap
again, let 〈f 〉 denote Monte Carlo estimate of some quantity f
using all Xk for k = 1, 2, . . . ,N
let 〈f 〉b denote Monte Carlo estimate of f using a new set X̂k for
k = 1, 2, . . . ,N where each X̂k is one of the original Xj chosen
randomly with equal probability (a bootstrap sample)
a given Xj can occur multiple times in the bootstrap sample
obtain large number B of such estimates

let 〈̂f 〉 = (1/B)
∑

b=1〈f 〉b
bootstrap error given by

σ(B) =

(
1

B− 1

B∑
b=1

(〈f 〉b − 〈̂f 〉)2

)1/2

plot of probability distribution from bootstrap estimates
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The effective mass

particularly good visual tool to see how well energy extracted is
so-called effective mass
for correlator C(t), effective mass defined by

meff(t) = ln
(

C(t)
C(t + at)

)
function which tends to E1 − E0 as t becomes large

lim
t→∞

meff(t) = lim
t→∞

ln

 A1e−(E1−E0)t
(

1 + (A2/A1)e−(E2−E1)t + . . .
)

A1e−(E1−E0)(t+at)
(

1+(A2/A1)e−(E2−E1)(t+at)+. . .
)


= ln
(

e(E1−E0)at

)
= at(E1 − E0).

value E1 − E0 seen as large-time plateau in effective mass
contributions from faster-decaying exponentials seen as
deviations of the effective mass from its asymptotic plateau value
“good” operator with little coupling to higher-lying states = rapid
onset of plateau
statistically noise generally grows with t
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The effective mass (continued)

two examples of effective masses
left: static quark-antiquark potential for separation 0.5 fm
right: nucleon
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Excited states from correlation matrices

extracting more than just the lowest energy in a symmetry
channel requires a hermitiam matrix of correlation functions Cij(t)

let λn(t, t0) denote eigenvalues of C(t0)−1/2 C(t) C(t0)−1/2, for t0
some fixed reference time
these eigenvalues can be viewed as principal correlators
ordered such that λ0 ≥ λ1 ≥ · · · as t becomes large
can show that

lim
t→∞

λn(t, t0) = e−En(t−t0)
(

1 + O(e−∆n(t−t0))
)
,

∆n = min
k 6=n
|Ek − En|.

principal effective masses associated with principal correlators

m(n)
eff (t) = ln

(
λn(t, t0)

λn(t + at, t0)

)
for N × N correlation matrix, these functions plateau to N lowest
lying energies
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Principal effective masses

LHPC currently holds world record for most energy levels
extracted in any lattice QCD computation: 9 in nucleon channel
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Spectrum for free scalar field theory

for free-field case on Nx × Ny × Nt lattice, define

Φ(t, nx, ny) =
∑
x,y

φ(x, y, t) e2πixnx/Nx+2πiny/Ny

lowest six levels having total zero momentum can be extracted
using the following set of six operators:

O0(t) = Φ(t, 0, 0)

O1(t) = Φ(t, 0, 0) Φ(t, 0, 0)

O2(t) = Φ(t, 1, 0) Φ(t,−1, 0)

O3(t) = Φ(t, 0, 1) Φ(t, 0,−1)

O4(t) = Φ(t, 1, 1) Φ(t,−1,−1)

O5(t) = Φ(t, 1,−1) Φ(t,−1, 1)
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Spectrum for λ = 0

extracted six lowest-lying levels in λ = 0 scalar field theory
242 × 48 isotropic lattice with asm = 0.25
exact results: 0.24935 for the mass, 0.49871 for twice the mass,
0.71903 for the two states having minimal relative momenta, and
0.88451 for the next two states
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Autocorrelations in the interacting theory

autocorrelations ρ(τ) of 〈Φ(t)Φ(0)〉 for t ∼ 1/(2asmgap)
compound sweep = 1 Metropolis + Nµ microcanonical sweep
µ = 1 is probability of proposing change in microcanonical
left plot: t = 2at used with κ = 0.1930 and λ = 0.300 on 242 × 48
isotropic lattice and asmgap ∼ 0.25
right plot: t = 5at used with κ = 0.1970 and λ = 0.300 on 322 × 96
isotropic lattice and asmgap ∼ 0.10
microcanonical acceptance rate about 80% in both cases
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Mass gaps

various single particle masses on 243 isotropic lattice
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Phase structure

theory has two phases separated by a line of critical points
for each value of λ, there exists a critical value κc(λ) at which
mass gap goes to zero
symmetric phase for κ < κc(λ)

φ→ −φ symmetry holds, 〈φ〉 = 0
broken phase for κ > κc(λ)

φ→ −φ spontaneously broken, 〈φ〉 6= 0
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Part V

Monte Carlo calculations in
lattice Quantum Chromodynamics
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Lattice QCD

hypercubic space-time lattice
quarks reside on sites, gluons reside on links between sites
for gluons, 8 dimensional integral on each link

path integral has dimension
32NxNyNzNt

10.6 million for 244 lattice

more sophisticated updating
algorithms
systematic errors
− discretization
− finite volume
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Glueball spectrum in pure gauge theory

gluons can bind to form
glueballs

e.m. analogue: massive
globules of pure light!

states labeled by JPC

scale set by
r−1

0 = 410(20) MeV
computed using
pseudo-heatbath and
microcanonical
24× 24 correlation matrix in
each symmetry channel
spin identification
mass gap with a bounty

Clay mathematics institute
will pay $ 1 million

C. Morningstar and M. Peardon,
Phys. Rev. D 60, 034509 (1999)
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Conclusion

observables in quantum mechanical systems can be extracted
from the correlation functions of the theory
correlation functions can be computed using path integrals
path integrals in the imaginary time formalism can be evaluated
using the Monte Carlo method
importance sampling from Markov chains
Metropolis-Hastings method
microcanonical updating
1-dimensional simple harmonic oscillator was first example
calculations in real scalar φ4 theory in 2 + 1 dimensions
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